Добро пожаловать Гость, вы находитесь здесь: Вход

wiki-fire.org - Электронная энциклопедия пожарного дела



RSS RSS

Навигация





Поиск по сайту

Главная тема

Вертикальный вызов 2

Наши разработки:



Мы в соцсетях


Баннер Офицеры России

PoweredBy
Подача пены средней кратности<br/> с применением генератора<br/>ГПС-600

Подача пены средней кратности
с применением генератора
ГПС-600

Подача пены средней кратности
с применением генератора
ГПС-600
Пена– наиболее эффективное и широко применяемое огнетушащее вещество изолирующего действия, представляет собой коллоидную систему из жидких пузырьков наполненных газомВ.В. Теребнев, Тактика тушения пожаров. Часть 1. Основы тушения пожаров: Учебное пособие. – М.: КУРС, 2016. 256 стр. – Пожарная безопасность..
Другие определения:
Пена: Дисперсная система, состоящая из ячеек - пузырьков воздуха (газа), разделенных пленками жидкости, содержащей пенообразователь. ГОСТ Р 50588-2012 «Пенообразователи для тушения пожаров. Общие технические требования и методы испытаний»



Общие сведения

Пена как огнетушащее вещество широко используется при тушении пожаров на объектах химической и нефтеперерабатывающей промышленности, а также используется для тушения твердых и жидких веществ, не вступающих во взаимодействие с водой.

Применение пены для тушения пожаров было предложено в 1904 году русским инженером А. Г. Лораном. Им получена химическая пена на основе водного раствора сернокислого алюминия и бикарбоната натрия с добавками в качестве пенообразователя солодкового экстракта. А. Г. Лоран высказал идею получения воздушно-механической пены и применения ее для тушения пожаров, однако реализовалась эта идея значительно позже.

Курьез:<br/>Бельгийские пожарные обливающие пеной<br/> полицейских во время акции протеста <br/>7 октября 2013

Курьез:
Бельгийские пожарные обливающие пеной
полицейских во время акции протеста
7 октября 2013

Курьез:
Бельгийские пожарные обливающие пеной
полицейских во время акции протеста
7 октября 2013
Пена представляет собой дисперсную двухфазную систему, состоящую из пузырьков газа, окруженных пленками жидкости. Отношение объемов газовой и жидкой фаз (в единице объема) пены определяет структуру и ее свойства. Если объем газовой фазы Vг превышает объем жидкости Уж не более чем в 10-20 раз, ячейки пены, заполненные газом, имеют сферическую форму. В таких пенах газовые пузыри окружены оболочками жидкости относительно большой толщины. Сферические пены отличаются высоким содержанием жидкости и в силу этого – малой устойчивостью. Поэтому их относят к метастабильным (условно стабильным). В нестабильных пенах наблюдается так называемый эффект Плато: жидкая фаза из перегородок удаляется, истекая под действием силы тяжести, и происходит быстрая коалесценция (от лат. coalesce - срастаюсь, соединяюсь) - слияние соприкасающихся газовых пузырьков. В пене газовый пузырек не может свободно перемещаться ни в вертикальной, ни в горизонтальной плоскости. Он как бы «зажат» другими, прилегающими к нему пузырьками. С увеличением отношения Vг / Уж толщина пленки жидкости, разделяющая газовые объемы, уменьшается, а газовая полость утрачивает сферическую форму. Пены, у которых отношение Vг / Уж составляет несколько десятков или даже сотен, имеют многогранную форму. Причем форма многогранников может быть различной - треугольные призмы, тетраэдры, неправильной формы параллелепипеды. В процессе старения пены шарообразная форма ячеек переходит в многогранную. Многогранные пены отличаются малым содержанием жидкой фазы и характеризуются высокой стабильностью. В таких пенах отдельные пузырьки сближены и разделены тонкими «растянутыми упругими пленками». Эти пленки в силу упругости и ряда других факторов препятствуют коалесценции газовых пузырьков. По мере утончения разделительных пленок пузырьки все плотнее сближаются, прилегают друг к другу и приобретают четкую форму многогранниковФизико-химические основы развития и тушения пожаров : учеб. пособие / С. А. Бобков, А. В. Бабурин, П. В. Комраков. - М. : Академия ГПС МЧС России, 2014. - 210 с..

Пена широко применяется для тушения пожаров твердых (пожары класса А) и жидких веществ (пожары класса В), не вступающих во взаимодействие с водой, и в первую очередь - для тушения пожаров нефтепродуктовpandia.ru Основы пенного тушения: пены, пенообразователи, смачиватели, их назначение, виды, состав, физико-химические свойства и область применения. Меры безопасности при работе с пенообразователями.

Достоинства пены как средства тушения:
  • существенное сокращение расхода воды;
  • возможность тушения пожаров больших площадей;
  • возможность объемного тушения;
  • возможность подслойного тушения нефтепродуктов в резервуарах;
  • повышенная (по сравнению с водой) смачивающая способность.
  • при тушении пеной не требуется одновременное перекрытие всего зеркала горения, поскольку пена способна растекаться по поверхности горящего материала.

История появления

В 1902 году метод тушения горючих жидкостей с помощью пены был предложен русским инженером и химиком Александром Лораном. Лоран был учителем в школе в Баку – в главном центре российской нефтяной промышленности в то время. Под впечатлением от страшных нефтяных пожаров, которые там иногда случались, Лоран пытался найти такое жидкое вещество, которое может эффективно бороться с пожаром. Так он изобрел огнетушащую пену, которая была успешно протестирована в нескольких экспериментах в 1902-1903 гг. В 1904 году Лоран запатентовал свое изобретение.

Оригинальная пена представляла собой смесь двух порошков и воды, соединяемых в генераторе пены. Этими порошками были бикарбонат натрия и сульфат алюминия. Получаемая химическая пена представляла собой стабильный раствор их мелких пузырьков, содержащих диоксид углерода с меньшей плотностью, чем нефть или вода. Поскольку этот раствор был легче, чем горючие жидкости, она свободно текла по горящей поверхности жидкости и гасила огонь, перекрывая доступ кислорода. Химическая пена сегодня считается устаревшей, так как даже для небольших возгораний требуются большое количество компонентов огнетушащего вещества.

В 1940-х годах, Перси Джулиан разработал улучшенный тип пены на основе жидкого концентрата белка, изготовленного из соевого белка, в смешении с водой в дозаторе или сопле аэрации дававший образование пузырьков воздуха. Коэффициент его расширения и простота в обращении способствовали получению распространенияwww.справка01.рф – Огнетушащая пена.

Классификация

По способу получения

Виды пены по способу получения:
  • химическая пена – получают в результате химической реакции щелочной и химической составляющих (выделяющийся углекислый газ вспенивает водный щелочной раствор);
  • воздушно-механическая пена – получают механическим перемешиванием пенообразующего раствора с воздухом.

Воздушно-механическая пена

Пенная установка автоматического пожаротушения<br/> пеной высокой кратности

Пенная установка автоматического пожаротушения
пеной высокой кратности

Пенная установка автоматического пожаротушения
пеной высокой кратности
См. Воздушно-механическая пена
В настоящее время в практике пожаротушения в основном применяют воздушно-механическую пену.

Воздушно-механическая пена, полученная из современных пеноконцентратов, является эффективным огнетушащим веществом. Пенный слой, сформированный на поверхности горящего вещества, одновременно обеспечивает его изоляцию от поступления новых порций кислорода, выступающего в качестве окислителя, и производит охлаждающий эффект за счёт большой теплоёмкости воды, входящей в состав пеныwww.spena.ru Генерация пены, рабочий раствор пенообразователя, генераторы пены, кратность пены..

Воздушно-механическую пену получают смешением водных растворов пенообразователей с воздухомТеребнев В.В., Моисев Ю.Н., Пожарная техника. Книга 1. Первичные средства пожаротушения. – Екатеринбург: ООО «Издательство «Калан». 2013 – 68 с..

Получение воздушно-механической пены осуществляется за счет механического смешения водного раствора пенообразователя и подсасываемого (или нагнетаемого) воздуха.

В практике тушения пожаров используются пены, которые получают различными способами и с помощью разных устройств:
  • пеноэмульсии — соударением свободных струй раствора, для тушения пожаров нефти в амбарах;
  • низкократные пены — в пеногенераторах, в которых эжектируемый воздух перемешивается с раствором пенообразователя;
  • пена средней кратности — на металлических сетках эжекционных пеногенераторов;
  • пена высокой кратности — в генераторах с перфорированной поверхностью тонких металлических листов или на специальном оборудовании, в результате принудительного наддува воздуха в пеногенератор от вентилятора Шароварников А.Ф., Шароварников С.А. Пенообразователи и пены для тушения пожаров. Состав, свойства, применение. М.: Пожнаука, 2005. - 335 с..

См. кратность пены.

Воздушно-механические пены (ВМП) средней и высокой кратности:
  • хорошо проникают в помещения, свободно преодолевают повороты и подъемы;
  • заполняют объемы помещений. вытесняют нагретые до высокой температуры продукты сгорания (в том числе токсичные), снижают температуру в помещении в целом, а так же строительных конструкций и т.п.;
  • прекращают пламенное горение и локализуют тление веществ и материалов, с которыми соприкааются;
  • создают условия для проникновения ствольщиков к очагам тления для дотушивания (при соответствующих мерах защиты органов дыхания и зрения от попадания пены)Теребнев В.В., Смирнов В.А., Семенов А.О., Пожаротушение. (Справочник), 2-е издание. – Екатеринбург: ООО «Издательство «Калан», 2012. – 472 с..

<b>Принцип действия пенного ствола средней кратности</b><br/>
1 — подвод воздуха; 2 — смесь води и пенообразователя; 3 — сетка; 4 — диффузор; 5 — приемное сопло; 6 — соединение между
направляющим соплом к приемным соплом; 7 — направляющее сопло; 8 — полугайка для подсоединения рукава

Принцип действия пенного ствола средней кратности
1 — подвод воздуха; 2 — смесь води и пенообразователя; 3 — сетка; 4 — диффузор; 5 — приемное сопло; 6 — соединение между направляющим соплом к приемным соплом; 7 — направляющее сопло; 8 — полугайка для подсоединения рукава

Принцип действия пенного ствола средней кратности
1 — подвод воздуха; 2 — смесь води и пенообразователя; 3 — сетка; 4 — диффузор; 5 — приемное сопло; 6 — соединение между направляющим соплом к приемным соплом; 7 — направляющее сопло; 8 — полугайка для подсоединения рукава
<b>Принцип работы генератора высокократной пены</b><br/>
1 — двигатель; 2 — вентилятор; 3 — диффузор: 4 — распылитель; 5—гибкий пенопровод; 6 — пена; 7 — пакет сеток; 8 — рама (шасси);
9 — вентиль для регулирования подачи раствора; 10 — полугайка для присоединения рукава

Принцип работы генератора высокократной пены
1 — двигатель; 2 — вентилятор; 3 — диффузор: 4 — распылитель; 5—гибкий пенопровод; 6 — пена; 7 — пакет сеток; 8 — рама (шасси); 9 — вентиль для регулирования подачи раствора; 10 — полугайка для присоединения рукава

Принцип работы генератора высокократной пены
1 — двигатель; 2 — вентилятор; 3 — диффузор: 4 — распылитель; 5—гибкий пенопровод; 6 — пена; 7 — пакет сеток; 8 — рама (шасси); 9 — вентиль для регулирования подачи раствора; 10 — полугайка для присоединения рукава

Химическая пена

См. Химическая пена
Химическая пена из-за сложности приготовления и относительно высокой стоимости в последнее время применяется редко.

Химическая пена может быть получена двумя способами: «мокрым» и «сухим». При «мокром» способе два вещества, хранящихся раздельно в виде растворов (один из них щелочной, другой — кислотный), смешивают перед подачей в очаг пожара. В результате их взаимодействия образуется пена.

«Мокрым» способом можно получать иену кратностью от нескольких сотен до нескольких тысяч.

При «сухом» способе пенообразующий порошок, состоящий из точно дозированных щелочных и кислотных солей, смешивают в пеногенераторе с потоком воды. При растворении солей во время движения смеси по водонапорному рукаву происходит такая же химическая реакция, как и при «мокром» способе.

«Мокрый» способ получения пены менее экономичен, так как хранение растворов связано с проблемой сооружения резервуаров большой емкости, сложностью их обслуживания и предупреждения коррозии Шрайбер Г., Порст П. , Огнетушащие вещества, М.: Стройиздат, 1975 г..

По кратности

См. Кратность пены
В зависимости от величины кратности пены разделяют на четыре группы:
  • пеноэмульсии, К < 3;
  • низкократные пены, 3 < К< 20;
  • пены средней кратности, 20 < К < 200;
  • пены высокой кратности, К > 200.

Получение пены низкой кратности<br/> с помощью ручного пожарного ствола ОРТ-50

Получение пены низкой кратности
с помощью ручного пожарного ствола ОРТ-50

Получение пены низкой кратности
с помощью ручного пожарного ствола ОРТ-50
Тушение пожара<br/> <i>пеной средней кратности</i>

Тушение пожара
пеной средней кратности

Тушение пожара
пеной средней кратности
Получение <i>пены высокой кратности</i> с использованием<br/> стационарных систем пожаротушения

Получение пены высокой кратности с использованием
стационарных систем пожаротушения

Получение пены высокой кратности с использованием
стационарных систем пожаротушения

Применение пены различной кратностиwww.pozhproekt.ru ОРТ-50www.heatandcool.ru Тушение пожара с помощью пены: преимущества и особенности


Основные свойства

Физико-химические свойства пены:
  • кратность - отношение объема пены к объему раствора пенообразователя, содержащегося в пене;
  • дисперсность - степень измельчения пузырьков (размеры пузырьков);
  • вязкость - способность пены к растеканию по поверхности;
  • стойкость – способность проводить электрический ток .

Огнетушащие свойства пены:
  • изолирующее действие (пена препятствует поступлению в зону горения горючих паров и газов, в результате чего горение прекращается);
  • охлаждающее действие (в значительной степени присуще пене низкой кратности, содержащим большое количество жидкости).

Изолирующее свойство пены — способность препятствовать испарению горючего вещества и прониканию через слой пены паров газа. Изолирующие свойства пены зависят от ее стойкости, вязкости и дисперсности. Низкократная и среднекратная воздушно-механическая пена обладает изолирующей способностью в пределах 1,5-2,5 мин при толщине изолирующего слоя 0,1 — 1 м.

Кратность

См. Кратность пены
Кратность воздушно-механической пены в равной мере зависит как от физико-химических свойств исходного пеноконцентрата общего или целевого назначения, так и от технических особенностей генераторов пены, имеющих специфические конструктивные ограничения.

Значение кратности пены Кп определяют по формуле:

Kп=Vп / Vp (1)

где Vп - объем пены, равный объему мерной емкости, дм3;
Vp - объем использованного жидкого заряда огнетушителя, дм3 ГОСТ Р 51057-2001 "Техника пожарная. Огнетушители."ГОСТ Р 50588-2012 "Пенообразователи для тушения пожаров. Общие технические требования и методы испытаний".

Дисперсность

Дисперсность пены Dп обратно пропорциональна среднему диаметру пузырьков dcp:

Dп= 1 / dcp (2)

Чем выше дисперсность, тем выше стойкость пены и огнетушащая эффективность. С повышением дисперсности пены ее кратность уменьшается. Степень дисперсности пены во многом зависит от условий ее получения, в том числе и от характеристики аппаратуры.

Кратность и дисперсность пены определяют изолирующую способность пены и ее текучесть. Скорость растекания пены тоже важный фактор при тушении пожара.

Вязкость

Для оценки качества пены недостаточно знать только время полураспада пены и ее тепло- стойкость, так как стойкая пена с большим периодом полураспада и высокой теплостойкостью может иметь при определенных условиях плохую" текучесть, вследствие чего горящая поверхность не покрывается пеной вообще или покрывается ею очень медленно. Поэтому определению текучести пены уделяется большое внимание.

Вязкость пены влияет на текучесть пены и оценивается коэффициентом динамической вязкости μ. В отличие от жидкости пена обладает свойствами упругого твердого тела. Внешне это проявляется в способности пены сохранять определенное время свою первоначальную форму.

Вязкость пены зависит от многих факторов и параметров, прежде всего от природы пенообразователя, кратности и дисперсности. Зависимость коэффициента динамической вязкости ц пены при различных дисперсностях показана на рис. 7.3.1. Из рисунка видно, что коэффициент динамической вязкости пены повышается с увеличением ее кратности и дисперсности.

Высокой вязкостью обладают пены, имеющие меньшую скорость истечения жидкости. Со временем в процессе старения пены вязкость ее сначала увеличивается, а затем в зависимости от типа пенообразователя может оставаться постоянной или уменьшаться.

Зависимость коэффициента динамической вязкости пены от ее кратности

Зависимость коэффициента динамической вязкости пены от ее кратности

Зависимость коэффициента динамической вязкости пены от ее кратности

Стойкость

Стойкость пены — это обратная величина интенсивности выделения отсека с размерностью м33* с.

Стойкость пены S характеризуется ее сопротивляемостью процессу разрушения и оценивается продолжительностью выделения из пены 50 % жидкой среды, называемой отсеком. Любая замкнутая система, обладающая избытком свободной энергии, находится в неустойчивом равновесии, поэтому энергия такой системы всегда уменьшается. Этот процесс протекает до достижения минимального значения свободной энергии, при котором в системе наступает равновесие. Если система состоит, например, из жидкости и газа (что имеет место в пенах), то минимальное значение свободной энергии будет достигнуто тогда, когда поверхность раздела фаз окажется минимальной.

Пена, как и любая дисперсная система, является неустойчивой. Неустойчивость пены объясняется наличием избытка поверхностной энергии, пропорциональной поверхности раздела фаз жидкость - газ. Следовательно, состояние равновесия пены будет достигнуто тогда, когда она превратится в жидкость и газ, т. е. прекратит свое существование. Поэтому применительно к пенам можно говорить лишь об относительной стойкости.

Экспериментально установлено, что стойкость пены зависит в основном от температуры окружающей среды, дисперсности и толщины стенок пузырьков.

Толщина стенок пузырька - hст, его диаметр - dпи кратность пены - Кп связаны зависимостью:

hст= dп / Кп (3)

Стойкость пены зависит также от высоты пенного слоя. При увеличении высоты слоя пены уменьшается выделение жидкой фазы, следовательно, стойкость пены увеличивается.

Пены с большей кратностью менее термостойки. С повышением вязкости пены стойкость ее возрастает, но ухудшается растекаемость по горящей поверхности.

Огнетушащая эффективность пены

Пенная атака

Пенная атака

Пенная атака
ВМП обладает необходимой стойкостью, дисперсностью, вязкостью, охлаждающими и изолирующими свойствами, которые позволяют использовать ее для тушения твердых материалов, жидких веществ и осуществления защитных действий, для тушения пожаров по поверхности и объемного заполнения горящих помещений (пена средней и высокой кратности). Для подачи пены низкой кратности применяют воздушно-пенные стволы СВП (СВПЭ), а для подачи средней и высокой кратности — пеногенераторы ГПСВ.П. Иванников, П.П. Клюс, "Справочник руководителя тушения пожара", Москва, Стройиздат, 1987.;.

Пены низкой кратности. Огнетушащее действие пены определяется эффектом охлаждения и изоляции. Оба эффекта не всегда оказывают свое действие одновременно и в одинаковой степени. Чаще всего в зависимости от условий протекания пожара временно преобладает тот или иной эффект.

Охлаждающий эффект пены обусловливается охлаждающим действием самой пены и воды, выделяющейся из пены.

Охлаждающий эффект является доминирующим при тушении пожаров, сопровождающихся тлением твердых материалов (например, древесины, бумаги, текстиля), а также при тушении пожаров нефти и жидкостей, при горении которых создаются прогретые зоны.

Этой способностью обладают средние и тяжелые жидкие топлива, при горении Которых верхние, нагретые до 200—300°С, поверхностные слои конвенционными потоками перемещаются со скоростью 5—20 см/ч в нижние слои. Тушение таких пожаров достигается охлаждением этих нагретых слоев топлива.

Изолирующее действие достигается благодаря образованию слоя пены, который препятствует доступу кислорода к очагу пожара.

Разновидностями изолирующего эффекта являются:
  • эффект разделения, заключающийся в изолировании жидкости от паровой фазы;
  • эффект вытеснения, обусловливающий изоляцию горючего вещества от воздуха;
  • преграждающий эффект, при котором пена препятствует испарению горючей жидкости.

Исследования по разделению этих эффектов и действенности каждого из них в зависимости от очага пожара пока неизвестны, поэтому указанные эффекты не могут точно определяться и характеризоваться.

Используемый для пенообразования газ, главным образом воздух или углекислый газ, не оказывает Прямого влияния на огнетушащий эффект пены, но обусловливает ее устойчивость.

Пена средней и высокой кратности. Огнетушащее действие высокократной пены основано главным образом на эффекте подавления. Охлаждающее действие ее настолько мало, что его влияние на процесс тушения незначительно. При подаче иены в очаг пожара происходит ее разрушение и испарение из нее воды. Например, если пена имеет кратность 1000, то в 1 м3 пены содержится около 1000 л воздуха и I л воды. В самых благоприятных условиях при испарении 1 л воды образуется 1700 л водяного пара, т. е. в общем объеме (2700 л) будет содержаться всего 200 л кислорода (7,4 об. %), что недостаточно для поддержания процесса горения. На практике такие соотношения не наблюдаются, так как испарение воды происходит не сразу, а постепенно из-за доступа свежего воздуха из периферийных зон очага горения. К тому же тлеющие пожары тушатся пеной сразу. Причина быстрого тушения таких пожаров заключается в следующем. При подаче в очаг пожара пена покрывает всю его площадь, благодаря чему вокруг очага горения создается обедненная кислородом и насыщенными парами воды атмосфера, что способствует замедлению и затем полному прекращению горения.

Другими важными свойствами высокократной пены являются теплоизолирующая способность и способность препятствовать распространению пожара па близлежащие горючие вещества. Так, при тушении пожара угольной пыли высокократная пена показывает такое же огнетушащее действие, как и смесь воды со смачивателем.

Пена средней кратности на основе ПО-1С, применяемая для тушения этилового спирта, эффективна при разбавлении его водой в емкости до 70 %, а при использовании ПО-1, ПО-1Д, ПО-2А, ПО-ЗА, ПО-6К и других — до 50%. ВМП менее электропроводна, чем химическая пена, и более электропроводна, чем вода. Поэтому тушение ею электроустановок с помощью ручных средств может производиться после их обесточивания.

Механизм прекращения горения

При тушении пену подают на отдельные участки горящей поверхности, и растекаясь по поверхности горючего, пена создаёт слой определённой толщины. Огнетушащая способность пены обусловлена, прежде всего, её изолирующим действием, т. е. способностью препятствовать прохождение в зону пламени горючих паров. Изолирующее действие пены зависит от её физико-химических свойств и структуры, от толщины слоя, а также от природы горючего вещества и температуры на его поверхности. При тушении твёрдых материалов, существенное значение имеет охлаждающее действие.

Схема прекращения горения жидкости <br/>воздушно-механической пеной:<br/>
<b>I</b> - участок свободного горения; <br/><b>II</b> - участок активного воздействия пены<br/> на процесс
горения; <br/> <b>III</b> - участок, на котором горение прекращено; <br/>
δ - глубина горючей жидкости в резервуаре

Схема прекращения горения жидкости
воздушно-механической пеной:
I - участок свободного горения;
II - участок активного воздействия пены
на процесс горения;
III - участок, на котором горение прекращено;
δ - глубина горючей жидкости в резервуаре

Схема прекращения горения жидкости
воздушно-механической пеной:
I - участок свободного горения;
II - участок активного воздействия пены
на процесс горения;
III - участок, на котором горение прекращено;
δ - глубина горючей жидкости в резервуаре
Взаимодействие пены с ГЖ с момента её подачи на горящую поверхность и до образования сплошного слоя пены представляет собой комплекс явлений:
  1. При интенсивности подачи пены, превышающей интенсивность её разрушения, на поверхности ГЖ образуется сразу локальный слой пены, который охлаждает ГЖ, выделяющимся из пены, отсеком. Охлаждение прогретого слоя ГЖ отсеком пены приводит к тому, что уменьшается скорость испарения ГЖ, вследствие этого уменьшается концентрация паров горючего в зоне горения, скорость химической реакции и скорость тепловыделения, и, как конечный результат, - температура горения.
  2. Как только образуется локальный слой пены на поверхности ГЖ, он экранирует часть ГЖ от лучистого потока пламени и охлаждает верхний прогретый слой. Уменьшается концентрация паров горючего в зоне горения, снижается скорость окисления, и снижается температура горения.
  3. При достижении на поверхности жидкости слоя пены определённой толщины, прекращается поступление выделяющихся паров ГЖ в зону горения. Следовательно, пена изолирует горючую жидкость от зоны горения, и горение прекращаетсяФондовая лекция по дисциплине «Физико-химические основы развития и тушения пожаров», Тема: Пены как огнетушащие вещества.

Разрушение пены

Результат тушения достигается за определенное время. В процессе тушения пена разрушается. Обычно рассматривают следующие виды разрушения пен: термическое - под действием тепловых потоков от факела пламени и нагретой жидкости; контактное - в результате проникновения жидкости в структуру пены; гидростатическое (синерезис). При термическом разрушении происходит разрыв стенок пузырьков из-за расширения заключенного в них нагретого газа. Причинами контактного разрушения являются взаимная растворимость пенообразующего раствора и горючей жидкости, в результате втягивания жидкости в места пересечения пузырьков пены - «каналы Плато - Гиббса» - за счет пониженного давления в них, в результате капиллярных явлений. Гидростатическое разрушение (обезвоживание) происходит за счет истечения раствора из пенной структуры под действием силы тяжести (сил гравитации).

Схема образования зон пониженного давления - <br/> «каналы Плато - Гиббса»

Схема образования зон пониженного давления -
«каналы Плато - Гиббса»

Схема образования зон пониженного давления -
«каналы Плато - Гиббса»

Существует три основных процесса, приводящие к разрушению пены:
  • перераспределение размеров пузырьков;
  • уменьшение толщины пленки;
  • разрыв пленки.

Эти процессы быстро разрушали бы пены, если бы не стабилизирующие факторы. Этих факторов три: кинетический, структурно-механический и термодинамический.

Кинетический фактор замедляет процесс утончения пленок, а следовательно, способствует повышению жизнеспособности пен. Необходимо, правда, отметить, что кинетическое действие заметно проявляется только в малоустойчивых пенах. Кинетический фактор часто называют эффектом самозалечивания, или эффектом Марангони. Суть его в том, что утончение пленки вследствие истечения жидкости под действием сил гравитации или всасывания ее через «каналы Плато - Гиббеа» происходит неравномерно. Отдельные участки пленки вокруг пенного пузырька становятся очень тонкими и способны разрушаться. В таких локальных тонких участках поверхностное натяжение возрастает, так как расстояние между молекулами ПАВ в поверхностном слое увеличивается. Вследствие этого раствор с повышенной концентрацией ПАВ из зоны низкого поверхностного натяжения, т. е. из участков с утолщенной пленкой, устремляется к истонченным зонам. Истонченные участки пленки самопроизвольно «залечиваются». Время, за которое совершается такое перетекание раствора, измеряется сотыми и даже тысячными долями секунды, поэтому вероятность разрыва пленки понижается и устойчивость возрастает.

Подтверждением этому служат наблюдения Дюпре: твердые вещества (свинцовая дробь) и капли жидкости (ртуть) могут пройти через пленку пены, не оставив дыры и не вызвав разрыва. Однако после длительной сушки пленки (высыхание пены), когда количество жидкости в ней сильно уменьшилось и перетекание раствора ПАВ становится невозможным, каждый такой «снаряд» вызывает разрыв.

Структурно-механический фактор стабилизации пен связан со специфическим упрочнением тонких пленок за счет гидратации адсорбционных слоев, а также за счет повышения вязкости межпленочной жидкости.

Взаимодействие полярных групп молекул ПАВ с водой (гидратация) ограничивает истечение межпленочной жидкости из среднего слоя «сэндвича» пленки под действием сил тяжести и капиллярных сил. В самом адсорбционном слое гидратированные молекулы ПАВ сцепляются между собой, в результате повышается прочность на растяжение и адсорбционных слоев, и пленки в целом.

Для повышения вязкости межпленочной жидкости к ПАВ добавляют определенные продукты, например, в присутствии тысячных долей процента спирта вязкость растворов ПАВ увеличивается в десятки раз.

Термодинамический фактор, или расклинивающее давление, проявляется в тонких пленках, когда возникает избыточное давление, препятствующее их утончению под действием внешних сил. Появление расклинивающего давления при истечении из пленок жидкости Б. В. Дерягин и Л. Д. Ландау объяснили следующим образом. На коллоидных частицах поверхностно-активных веществ всегда присутствуют жидкие оболочки повышенной вязкости и упругости. Эти оболочки создают механический барьер, препятствующий сближению и слипанию частиц при утончении пленок за счет истечения жидкости. Кроме того, в водном растворе электролита между поверхностями одноименно заряженных частиц действуют силы отталкивания. Оба эти явления и обусловливают расклинивающее давление в пленке.

Процесс разрушения пены характеризуется интенсивностью разрушения Iразр. Интенсивность разрушение пены за счет действия высокой температуры Iразртерм и контактного взаимодействия с горючей жидкостью Iразрконт зависит от кратности пены. Чем выше кратность пены, тем ниже интенсивность разрушения от контактного взаимодействия с горючей жидкостью, но увеличивается термическая интенсивность разрушения

Зависимость термической (1) и контактной (2) интенсивностей разрушения пены от кратности

Зависимость термической (1) и контактной (2) интенсивностей разрушения пены от кратности

Зависимость термической (1) и контактной (2) интенсивностей разрушения пены от кратности

Из рисунка видно, что существует некоторая оптимальная кратность пены, при которой термическая и контактная интенсивности разрушения пены достаточно малы и равны друг другу. Значение такой кратности ориентировочно равно 100.

Применение пены

Низкократные пены подают на ликвидацию горения в основном горящих поверхностей. Они хорошо удерживаются и растекаются по поверхности, препятствуют прорыву горючих паров, обладают значительным охлаждающим действием, их можно подать струей на значительное расстояние; кроме того, пена хорошо проникает через неплотности и удерживается на поверхности, обладает высокими изолирующими и охлаждающими свойствами.

Высокократную пену, а также пену средней кратности применяют для заполнения объемов, вытеснения дыма, изоляции отдельных объектов от действия теплоты и газовых потоков (в подвалах; пустотах перекрытий; сушильных камерах и вентиляционных системах и т.п.

Пена средней кратности в настоящее время является основным огнетушащим средством ликвидации горения нефти и нефтепродуктов в резервуарах и разлитых на открытой поверхности.

Воздушно-механическую пену часто применяют в сочетании с огнетушащими порошковыми составами, нерастворимыми в воде. Огнетушащие порошковые составы высокоэффективны для ликвидации пла-менного горения, но почти не охлаждают горящую поверхность. Пена компенсирует этот недостаток и дополнительно изолирует поверхность.

Покрытие ВПП слоем пены

Покрытие ВПП слоем пены

Покрытие ВПП слоем пены
Пены — достаточно универсальное средство и используются для тушения жидких и твердых веществ, за исключением веществ, взаимодействующих с водой. Пены электропроводны и коррозируют металлы. Наиболее электропроводна и активна химическая пена. Воздушно-механическая пена менее электропроводна, чем химическая, однако более электропроводна, чем вода, входящая в состав пены.

Для ликвидации горения спиртов и водорастворимых органических соединений используют пенообразователи, в состав которых входят природные или синтетические полимеры.

Кроме того, пена средней кратности широко применяется на аэродромах, для покрытия взлетно-посадочной полосы слоем пены, в случае аварийной посадки воздушного судна. Слой пены, нанесенный на взлетно-посадочную полосу, предотвращает образование искр при скольжении колес самолета во время вынужденной посадки.

Источники


Ссылки


Так же вас могут заинтересовать

  1. Компрессионная пена
  2. CAFS
  3. Температурно-активированная вода

Вверх
У данной страницы нет кураторов!
  Имя Размер
- Belgium.jpg 466,05 KB
- Foam_1.png 36,96 KB
- Foam_2.png 40,63 KB
- FoamAttack.jpg 60,22 KB
- fxor2_clip_image002.jpg 48,50 KB
- H_foam.jpg 60,56 KB
- Main.jpg 61,23 KB
- RazrOfFoam.jpg 40,40 KB
- RazrOfFoam_2.jpg 18,94 KB
- Vazk.jpg 16,51 KB
- VPP_FoamStrip.jpg 89,25 KB
Принципы нашего сообщества

Адрес для обратной связи с администратором сайта:

ScrewTurn Wiki version 3.0.5.600. Some of the icons created by FamFamFam.

Рейтинг@Mail.ru Яндекс.Метрика Индекс цитирования